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CHAPTER
ONE

INTRODUCTION

Welcome to the documentation of FairML, a tool to build Machine Learning models and RL agents with certain
desirable behavior.You can read more about this approach here.

Also, read more about a comprehensive quickstart guide at https://aisafety.cs.umass.edu.



https://aisafety.cs.umass.edu/paper.html
https://aisafety.cs.umass.edu
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CHAPTER
TWO

QUICKSTART

The best way is get started is to quickly jump into an example: Here is a Google Colab notebook to train a simple
Logistic Regression model on the UCI Adult dataset.And here is a step-by-step tutorial.

2.1 Model class creation

Create a subclass of seldonian.algorithm.SeldonianAlgorithm class.

from seldonian.algorithm import =*
class ExampleSeldonianModel (SeldonianAlgorithm) :
def _ _init__ (self, xparams, =**kwargs ):
example_model = Model ()
#initialize all the model parameters
pass

Now that we have a basic model setup, we need to implement the abstract method of SeldonianAlgorithm class.

e predict - This is a basic prediction method that uses the current model parameters to predict the output
targets.

from seldonian.algorithm import =«
class ExampleSeldonianModel (SeldonianAlgorithm) :
def _ _init__ (self, xparams, =*x*kwargs ):
self.example_model = Model ()
#initialize all the model parameters
pass
def predict (self, X, *xkwargs):
# prediction based on teh model
return self.example_model.predict (X)

e data returns the complete data and targets as a tuple back. This includes the safety as well as the candidate
data.

from seldonian.algorithm import =
class ExampleSeldonianModel (SeldonianAlgorithm) :
def _ _init__ (self, xparams, =**kwargs ):
self.example_model = Model ()
#initialize all the model parameters
pass
def predict (self, X, =xxkwargs):
# prediction based on teh model
return self.example_model.predict (X)

(continues on next page)



https://colab.research.google.com/github/hannanabdul55/seldonian-fairness/blob/master/logistic_regression_seldonian.ipynb
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(continued from previous page)

def data(self):
return X, y

e fit trains the model with the constraints.

from seldonian.algorithm import =*
class ExampleSeldonianModel (SeldonianAlgorithm) :
def _ init_ (self, xparams, *xkwargs ):
self.example_model = Model ()
#initialize all the model parameters
pass
def predict (self, X, =xxkwargs):
# prediction based on teh model
return self.example_model.predict (X)
def data(self):
return self.X, self.y
def fit(self, *args, =xkwargs):
# fit model based under the constraint that g >0.
pass

There are various examples of such constraint optimization problems implemented like the Lagrangian 2 player game
as implemented in the VanillaNN class.

Or using a barrier when optimizing using a Black box optimization technique like CMA-ES or scipy.optimize.
minimize class. You can find them under the seldonian.seldonian package.

* _safetyTest performs a the safety test using the safety set, or predicts the upper bound of the constraint
g (\theta) during candidate selection (or in this case, £it).

from seldonian.algorithm import =«
class ExampleSeldonianModel (SeldonianAlgorithm) :
def _ init__ (self, xparams, =*=*kwargs ):
self.example_model = Model ()
#initialize all the model parameters
pass
def predict(self, X, xxkwargs):
# prediction based on teh model
return self.example_model.predict (X)
def data(self):
return self.X, self.y
def fit(self, *args, =xxkwargs):
# fit model based under the constraint that g >0.
pass
def _safetyTest (self, predict, xxkwargs):
if predict:
# predict the upper bound during candidate selection
return 1 if passed_is_predicted else 0
pass
else:
# run the actual safety test
return 1 if passed else 0
pass
pass
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2.2 Training

This is all you need to implement a Seldonian model. You also need some constraints that are basically function

callables. Some examples of such constraints is present in the seldonian.objectives package. A sample run
would look something like this -

constraints = [constraintl, constraint2,...] #list of function callables
seldonian_model ExampleSeldonianModel (constriants, data, other_args)

X, y = data

seldonian_model.fit (X, vy)

return seldonian_model if seldonian_model._safetyTest () else NSF # No solution found
# we now have a trained model you can now do your predictions on this model

2.2. Training 5
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CHAPTER
THREE

REFERENCE

3.1 Seldonian Algorithm

class seldonian.algorithm.SeldonianAlgorithm
Bases: abc . ABC

Abstract class which represents the basic functions of a Seldonian Algorithm. This class can be considered as a
starting point for implementing your own Seldonian algorithm.

Read more about the Seldonian Approach in Preventing undesirable behavior of intelligent machines

abstract _safetyTest (**kwargs)
Run the safety test on the trained model from the candidate selection part i.e. the fit () function. It is
also used to predict the g(#) value used in candidate selection.

:param kwargs Key value arguments sent to the subclass implementation of safety test. :return Depending
on the implementation, it will either return 0 if it passes or I if it doesn’t. Or, it will also return the g(6)
value if it does not pass the safety test. Use the safetyTest () method to get a boolean value.

abstract data ()
Access the training data used by the model.

Returns Tuple (Training data, labels)

abstract fit (**kwargs)
Abstract method that is used to train the model. Also, this is the candidate selection part of the Seldonian
Algorithm.

Parameters kwargs — key value arguments sent to the fit function
Returns

abstract predict (X)
Predict the output of the model on the the input X.

Parameters X — input data to be predicted by the model.
Returns output predictions for each sample in the input X

safetyTest (**kwargs)
A wrapper for the _safetyTest method that return a Boolean indicating whether the model passed
the safety test.

Parameters kwargs — Key-value arguments that is passed directly to _safetyTest.

Returns

e True if model passed the safety test.



https://doi.org/10.1126/science.aag3311
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* False if the model fails the safety test.

3.2 Seldonian Abstract classes

Use this as a base class to implement your own fair model using the Seldonian approach.

class seldonian.seldonian.LogisticRegressionSeldonianModel (X, Yy, g_hats=[],

safety_data=None,
test_size=0.5,
verbose=True,
hard_barrier=False,
stratify=False,  ran-
dom_seed=0)

Bases: seldonian.algorithm.SeldonianAlgorithm

Implements a Logistic Regression classifier using scipy.optimize package as the optimizer using the Sel-

donian Approach for training the model. Have a look at the scipy.optimize.minimize reference for more infor-

mation. You can use any of the methods listen in the method input of this SciPy function as a parameter to the

fit () method call.

__init__ (X,y, g_hats=[], safety_data=None, test_size=0.5, verbose=True, hard_barrier=False, strat-

ify=False, random_seed=0)
Initialize self. See help(type(self)) for accurate signature.

_safetyTest (theta=None, predict=False, ub=True)
This is the mehtod that implements the safety test. for this model.

Parameters

* theta — Model parameters to be used to run the safety test. Default - None. If None,
the current model parameters used.

* predict — Default - False. Indicate whether you want to predict the upper bound of
g(0) using the candidate set (this is used when running candidate selection).

e ub — returns the upper bound if True. Else, it returns the calculated value. Default-
True.

Returns Returns the value maxz{0, g(0)| X } if predict = False , else max{0, §(6)| X }.

data ()
Access the training data used by the model.

Returns Tuple (Training data, labels)

fit (opt="Powell’)
Abstract method that is used to train the model. Also, this is the candidate selection part of the Seldonian
Algorithm.

Parameters kwargs — key value arguments sent to the fit function
Returns

predict (X)
Predict the output of the model on the the input X.

Parameters X — input data to be predicted by the model.

Returns output predictions for each sample in the input X

8 Chapter 3. Reference
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class seldonian.seldonian.PDISSeldonianPolicyCMAES (data, states, actions, gamma,
threshold=2, test_size=0.4, multi-

processing=True)
Bases: seldonian.cmaes.CMAESModel, seldonian.algorithm.SeldonianAlgorithm

__init__ (data, states, actions, gamma, threshold=2, test_size=0.4, multiprocessing=True)
Initialize self. See help(type(self)) for accurate signature.

_safetyTest (theta, predict=False, ub=False, est=None)
Run the safety test on the trained model from the candidate selection part i.e. the £it () function. It is
also used to predict the g(#) value used in candidate selection.

:param kwargs Key value arguments sent to the subclass implementation of safety test. :return Depending
on the implementation, it will either return 0 if it passes or I if it doesn’t. Or, it will also return the g(6)
value if it does not pass the safety test. Use the safetyTest () method to get a boolean value.

predict (X)
Predict the output of the model on the the input X.

Parameters X — input data to be predicted by the model.
Returns output predictions for each sample in the input X

class seldonian.seldonian.SeldonianAlgorithmLogRegCMAES (X, Y, g_hats=[],
safety_data=None,
verbose=Fulse,
test_size=0.35,
stratify=False,
hard_barrier=False,

random_seed=0)
Bases: seldonian.cmaes.CMAESModel, seldonian.algorithm.SeldonianAlgorithm

Implements a Logistic Regression classifier with CMA-ES as the optimizer using the Seldonian Approach.

__init_ (X, y, g_hats=[], safety_data=None, verbose=False, test_size=0.35, stratify=False,

hard_barrier=False, random_seed=0)
Initialize the model.

Parameters
* X — Training data to be used by the model.
* y — Training labels for the X
¢ g_hats — A list of all constraint on the model.

* safety_data - If you have a separate held out data to be used for the safety set, it
should be specified here, otherwise, the data X is split according to test_size for this.

* verbose — Print out extra log statements

* test_size —ratio of the data X to e used for the safety set.

* stratify — Stratify the training data when splitting to train/safety sets.

* hard barrier — Use a hard barrier while training the data using the BBO optimizer.

_safetyTest (theta=None, predict=False, ub=True)
Run the safety test on the trained model from the candidate selection part i.e. the £it () function. It is
also used to predict the g(#) value used in candidate selection.

:param kwargs Key value arguments sent to the subclass implementation of safety test. :return Depending
on the implementation, it will either return O if it passes or I if it doesn’t. Or, it will also return the g(6)
value if it does not pass the safety test. Use the safetyTest () method to get a boolean value.

3.2. Seldonian Abstract classes 9
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data ()
Access the training data used by the model.

Returns Tuple (Training data, labels)

predict (X)
Predict the output of the model on the the input X.

Parameters X — input data to be predicted by the model.
Returns output predictions for each sample in the input X

class seldonian.seldonian.SeldonianCEMPDISPolicy (data, states, actions, gamma,
threshold=1.41537, test_size=0.4,

verbose=False, use_ray=False)
Bases: seldonian.algorithm.SeldonianAlgorithm

__init_ (data, states, actions, gamma, threshold=1.41537, test_size=0.4, verbose=False,

use_ray=False)
Initialize self. See help(type(self)) for accurate signature.

_safetyTest (theta, predict=False, ub=False)
Run the safety test on the trained model from the candidate selection part i.e. the fit () function. It is
also used to predict the g(#) value used in candidate selection.

:param kwargs Key value arguments sent to the subclass implementation of safety test. :return Depending
on the implementation, it will either return 0 if it passes or I if it doesn’t. Or, it will also return the g(6)
value if it does not pass the safety test. Use the safetyTest () method to get a boolean value.

data ()
Access the training data used by the model.

Returns Tuple (Training data, labels)

£it (method="Powell’)
Abstract method that is used to train the model. Also, this is the candidate selection part of the Seldonian
Algorithm.

Parameters kwargs — key value arguments sent to the fit function
Returns

predict (X)
Predict the output of the model on the the input X.

Parameters X — input data to be predicted by the model.
Returns output predictions for each sample in the input X

class seldonian.seldonian.VanillaNN (X, y, test_size=0.4, g_hats=[], verbose=False, strat-

ify=False, epochs=10, model=None, random_seed=0)
Bases: seldonian.algorithm.SeldonianAlgorithm

Implement a Seldonian Algorithm on a Neural network.

__init_ (X, y, test_size=0.4, g_hats=[], verbose=False, stratify=False, epochs=10, model=None,

. random_seed=0) . . . . . .
Initialize a model with g_hats constraints. This class is an example of training a non-linear model like a

neural network based on the Seldonian Approach.
Parameters
* X — Input data, this also includes the safety set.

» y —targets for the data X

10 Chapter 3. Reference
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* test_size — the fraction of X to be used for the safety test

* g_hats —alist of function callables that correspond to a constriant

* verbose — Set this to True to get some debug messages.

* stratify — set this to true if you want to do stratified sampling of safety set.
* epochs — number of epochs to run teh training of the model. Default: 10

* model — PyTorch model to use. Should be an instance of nn.Module. Defaults to a 2
layer model with a binary output.

_safetyTest (predict=False, ub=True)
Run the safety test on the trained model from the candidate selection part i.e. the £it () function. It is
also used to predict the g(#) value used in candidate selection.

:param kwargs Key value arguments sent to the subclass implementation of safety test. :return Depending
on the implementation, it will either return O if it passes or I if it doesn’t. Or, it will also return the g(6)
value if it does not pass the safety test. Use the safetyTest () method to get a boolean value.

data ()
Access the training data used by the model.

Returns Tuple (Training data, labels)

fit (**kwargs)
Abstract method that is used to train the model. Also, this is the candidate selection part of the Seldonian
Algorithm.

Parameters kwargs — key value arguments sent to the fit function
Returns

predict (X, pmf=False)
Predict the output of the model on the the input X.

Parameters X — input data to be predicted by the model.

Returns output predictions for each sample in the input X

3.3 Sample constraint functions

class seldonian.objectives.Constraint
Bases: abc.ABC

seldonian.objectives.ghat_recall_rate (A_idx, method="ttest', threshold=0.2)
Create a g_hat for the recall rate difference between :param A_idx subset versus the entire data.

Parameters
* A idx-
* method —
* threshold — Recall rate should not be greater than this value.
Returns method that is to be sent to the Seldonian Algorithm and is used for calculating teh g_hat

seldonian.objectives.ghat_tpr diff (A_idx, method="ttest', threshold=0.2)
Create a g(6) for the true positive rate difference between A_idx subset versus the entire data.

Parameters

3.3. Sample constraint functions 11
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* A_idx - index of the sensitive attribute in the X passed to the method returned by this
function.

* method — The method used to calculate the upper bound. Currently supported values are:
— ttest - Use student Student’s t-distribution to calculate the confidence interval.
— hoeffdings - Use the Hoeffdings inequality to caluclate the 95% confidence interval.
* threshold — TPR rate should not be greater than this value.
Returns method that is to be sent to the Seldonian Algorithm and is used for calculating the g(6)

seldonian.objectives.ghat_tpr diff t (A_idx, method="ttest', threshold=0.2)
Pytorch version of the true positive rate difference version of ghat_tpr_ diff ().

Create a g(6) for the true positive rate difference between A__idx subset versus the entire data.
Parameters

* A_idx - index of the sensitive attribute in the X passed to the method returned by this
function.

* method — The method used to calculate the upper bound. Currently supported values are:
— ttest - Use student Student’s t-distribution to calculate the confidence interval.
— hoeffdings - Use the Hoeffdings inequality to caluclate the 95% confidence interval.

* threshold — TPR rate should not be greater than this value.

Returns method that is to be sent to the Seldonian Algorithm and is used for calculating the g(6)

3.4 CMA-ES optimizer implementation

class seldonian.cmaes.CMAESModel (X, y, verbose=False, random_seed=0, theta=None, max-

iter=None)
Bases: abc.ABC

This library is an implementation of the paper Preventing undesirable behavior of intelligent machines.

12 Chapter 3. Reference
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INDICES AND TABLES

* genindex
¢ modindex

¢ search
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