Seldonian FairML

Abdul Hannan Kaniji

Aug 08, 2021

TABLE OF CONTENTS

1 Introduction 1
2 Quickstart 3
2.1 Modelclass Creation e e e e e e e e e e e e e 3
2.2 Training L e e e e e e e e e e e e e e 5
3 Reference 7
3.1 Seldonian Algorithm e e e e e e 7
3.2 Seldonian Abstract Classeso e e e e e e e e e e e e 8
3.3 Sample constraint functions oL Lo e e e e e e e 11
34 CMA-ES optimizer implementation it e 12
4 Indices and tables 13
Python Module Index 15
Index 17

CHAPTER
ONE

INTRODUCTION

Welcome to the documentation of FairML, a tool to build Machine Learning models and RL agents with certain
desirable behavior.You can read more about this approach here.

Also, read more about a comprehensive quickstart guide at https://aisafety.cs.umass.edu.

https://aisafety.cs.umass.edu/paper.html
https://aisafety.cs.umass.edu

Seldonian FairML

2 Chapter 1. Introduction

CHAPTER
TWO

QUICKSTART

The best way is get started is to quickly jump into an example: Here is a Google Colab notebook to train a simple
Logistic Regression model on the UCI Adult dataset.And here is a step-by-step tutorial.

2.1 Model class creation

Create a subclass of seldonian.algorithm.SeldonianAlgorithm class.

from seldonian.algorithm import =*
class ExampleSeldonianModel (SeldonianAlgorithm) :
def _ _init__ (self, xparams, =**kwargs):
example_model = Model ()
#initialize all the model parameters
pass

Now that we have a basic model setup, we need to implement the abstract method of SeldonianAlgorithm class.

e predict - This is a basic prediction method that uses the current model parameters to predict the output
targets.

from seldonian.algorithm import =«
class ExampleSeldonianModel (SeldonianAlgorithm) :
def _ _init__ (self, xparams, =*x*kwargs):
self.example_model = Model ()
#initialize all the model parameters
pass
def predict (self, X, *xkwargs):
prediction based on teh model
return self.example_model.predict (X)

e data returns the complete data and targets as a tuple back. This includes the safety as well as the candidate
data.

from seldonian.algorithm import =
class ExampleSeldonianModel (SeldonianAlgorithm) :
def _ _init__ (self, xparams, =**kwargs):
self.example_model = Model ()
#initialize all the model parameters
pass
def predict (self, X, =xxkwargs):
prediction based on teh model
return self.example_model.predict (X)

(continues on next page)

https://colab.research.google.com/github/hannanabdul55/seldonian-fairness/blob/master/logistic_regression_seldonian.ipynb

Seldonian FairML

(continued from previous page)

def data(self):
return X, y

e fit trains the model with the constraints.

from seldonian.algorithm import =*
class ExampleSeldonianModel (SeldonianAlgorithm) :
def _ init_ (self, xparams, *xkwargs):
self.example_model = Model ()
#initialize all the model parameters
pass
def predict (self, X, =xxkwargs):
prediction based on teh model
return self.example_model.predict (X)
def data(self):
return self.X, self.y
def fit(self, *args, =xkwargs):
fit model based under the constraint that g >0.
pass

There are various examples of such constraint optimization problems implemented like the Lagrangian 2 player game
as implemented in the VanillaNN class.

Or using a barrier when optimizing using a Black box optimization technique like CMA-ES or scipy.optimize.
minimize class. You can find them under the seldonian.seldonian package.

* _safetyTest performs a the safety test using the safety set, or predicts the upper bound of the constraint
g (\theta) during candidate selection (or in this case, £it).

from seldonian.algorithm import =«
class ExampleSeldonianModel (SeldonianAlgorithm) :
def _ init__ (self, xparams, =*=*kwargs):
self.example_model = Model ()
#initialize all the model parameters
pass
def predict(self, X, xxkwargs):
prediction based on teh model
return self.example_model.predict (X)
def data(self):
return self.X, self.y
def fit(self, *args, =xxkwargs):
fit model based under the constraint that g >0.
pass
def _safetyTest (self, predict, xxkwargs):
if predict:
predict the upper bound during candidate selection
return 1 if passed_is_predicted else 0
pass
else:
run the actual safety test
return 1 if passed else 0
pass
pass

4 Chapter 2. Quickstart

Seldonian FairML

2.2 Training

This is all you need to implement a Seldonian model. You also need some constraints that are basically function

callables. Some examples of such constraints is present in the seldonian.objectives package. A sample run
would look something like this -

constraints = [constraintl, constraint2,...] #list of function callables
seldonian_model ExampleSeldonianModel (constriants, data, other_args)

X, y = data

seldonian_model.fit (X, vy)

return seldonian_model if seldonian_model._safetyTest () else NSF # No solution found
we now have a trained model you can now do your predictions on this model

2.2. Training 5

Seldonian FairML

6 Chapter 2. Quickstart

CHAPTER
THREE

REFERENCE

3.1 Seldonian Algorithm

class seldonian.algorithm.SeldonianAlgorithm
Bases: abc . ABC

Abstract class which represents the basic functions of a Seldonian Algorithm. This class can be considered as a
starting point for implementing your own Seldonian algorithm.

Read more about the Seldonian Approach in Preventing undesirable behavior of intelligent machines

abstract _safetyTest (**kwargs)
Run the safety test on the trained model from the candidate selection part i.e. the fit () function. It is
also used to predict the g(#) value used in candidate selection.

:param kwargs Key value arguments sent to the subclass implementation of safety test. :return Depending
on the implementation, it will either return 0 if it passes or I if it doesn’t. Or, it will also return the g(6)
value if it does not pass the safety test. Use the safetyTest () method to get a boolean value.

abstract data ()
Access the training data used by the model.

Returns Tuple (Training data, labels)

abstract fit (**kwargs)
Abstract method that is used to train the model. Also, this is the candidate selection part of the Seldonian
Algorithm.

Parameters kwargs — key value arguments sent to the fit function
Returns

abstract predict (X)
Predict the output of the model on the the input X.

Parameters X — input data to be predicted by the model.
Returns output predictions for each sample in the input X

safetyTest (**kwargs)
A wrapper for the _safetyTest method that return a Boolean indicating whether the model passed
the safety test.

Parameters kwargs — Key-value arguments that is passed directly to _safetyTest.

Returns

e True if model passed the safety test.

https://doi.org/10.1126/science.aag3311

Seldonian FairML

* False if the model fails the safety test.

3.2 Seldonian Abstract classes

Use this as a base class to implement your own fair model using the Seldonian approach.

class seldonian.seldonian.LogisticRegressionSeldonianModel (X, Yy, g_hats=[],

safety_data=None,
test_size=0.5,
verbose=True,
hard_barrier=False,
stratify=False, ran-
dom_seed=0)

Bases: seldonian.algorithm.SeldonianAlgorithm

Implements a Logistic Regression classifier using scipy.optimize package as the optimizer using the Sel-

donian Approach for training the model. Have a look at the scipy.optimize.minimize reference for more infor-

mation. You can use any of the methods listen in the method input of this SciPy function as a parameter to the

fit () method call.

__init__ (X,y, g_hats=[], safety_data=None, test_size=0.5, verbose=True, hard_barrier=False, strat-

ify=False, random_seed=0)
Initialize self. See help(type(self)) for accurate signature.

_safetyTest (theta=None, predict=False, ub=True)
This is the mehtod that implements the safety test. for this model.

Parameters

* theta — Model parameters to be used to run the safety test. Default - None. If None,
the current model parameters used.

* predict — Default - False. Indicate whether you want to predict the upper bound of
g(0) using the candidate set (this is used when running candidate selection).

e ub — returns the upper bound if True. Else, it returns the calculated value. Default-
True.

Returns Returns the value maxz{0, g(0)| X } if predict = False , else max{0, §(6)| X }.

data ()
Access the training data used by the model.

Returns Tuple (Training data, labels)

fit (opt="Powell’)
Abstract method that is used to train the model. Also, this is the candidate selection part of the Seldonian
Algorithm.

Parameters kwargs — key value arguments sent to the fit function
Returns

predict (X)
Predict the output of the model on the the input X.

Parameters X — input data to be predicted by the model.

Returns output predictions for each sample in the input X

8 Chapter 3. Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html

Seldonian FairML

class seldonian.seldonian.PDISSeldonianPolicyCMAES (data, states, actions, gamma,
threshold=2, test_size=0.4, multi-

processing=True)
Bases: seldonian.cmaes.CMAESModel, seldonian.algorithm.SeldonianAlgorithm

__init__ (data, states, actions, gamma, threshold=2, test_size=0.4, multiprocessing=True)
Initialize self. See help(type(self)) for accurate signature.

_safetyTest (theta, predict=False, ub=False, est=None)
Run the safety test on the trained model from the candidate selection part i.e. the £it () function. It is
also used to predict the g(#) value used in candidate selection.

:param kwargs Key value arguments sent to the subclass implementation of safety test. :return Depending
on the implementation, it will either return 0 if it passes or I if it doesn’t. Or, it will also return the g(6)
value if it does not pass the safety test. Use the safetyTest () method to get a boolean value.

predict (X)
Predict the output of the model on the the input X.

Parameters X — input data to be predicted by the model.
Returns output predictions for each sample in the input X

class seldonian.seldonian.SeldonianAlgorithmLogRegCMAES (X, Y, g_hats=[],
safety_data=None,
verbose=Fulse,
test_size=0.35,
stratify=False,
hard_barrier=False,

random_seed=0)
Bases: seldonian.cmaes.CMAESModel, seldonian.algorithm.SeldonianAlgorithm

Implements a Logistic Regression classifier with CMA-ES as the optimizer using the Seldonian Approach.

__init_ (X, y, g_hats=[], safety_data=None, verbose=False, test_size=0.35, stratify=False,

hard_barrier=False, random_seed=0)
Initialize the model.

Parameters
* X — Training data to be used by the model.
* y — Training labels for the X
¢ g_hats — A list of all constraint on the model.

* safety_data - If you have a separate held out data to be used for the safety set, it
should be specified here, otherwise, the data X is split according to test_size for this.

* verbose — Print out extra log statements

* test_size —ratio of the data X to e used for the safety set.

* stratify — Stratify the training data when splitting to train/safety sets.

* hard barrier — Use a hard barrier while training the data using the BBO optimizer.

_safetyTest (theta=None, predict=False, ub=True)
Run the safety test on the trained model from the candidate selection part i.e. the £it () function. It is
also used to predict the g(#) value used in candidate selection.

:param kwargs Key value arguments sent to the subclass implementation of safety test. :return Depending
on the implementation, it will either return O if it passes or I if it doesn’t. Or, it will also return the g(6)
value if it does not pass the safety test. Use the safetyTest () method to get a boolean value.

3.2. Seldonian Abstract classes 9

https://en.wikipedia.org/wiki/CMA-ES

Seldonian FairML

data ()
Access the training data used by the model.

Returns Tuple (Training data, labels)

predict (X)
Predict the output of the model on the the input X.

Parameters X — input data to be predicted by the model.
Returns output predictions for each sample in the input X

class seldonian.seldonian.SeldonianCEMPDISPolicy (data, states, actions, gamma,
threshold=1.41537, test_size=0.4,

verbose=False, use_ray=False)
Bases: seldonian.algorithm.SeldonianAlgorithm

__init_ (data, states, actions, gamma, threshold=1.41537, test_size=0.4, verbose=False,

use_ray=False)
Initialize self. See help(type(self)) for accurate signature.

_safetyTest (theta, predict=False, ub=False)
Run the safety test on the trained model from the candidate selection part i.e. the fit () function. It is
also used to predict the g(#) value used in candidate selection.

:param kwargs Key value arguments sent to the subclass implementation of safety test. :return Depending
on the implementation, it will either return 0 if it passes or I if it doesn’t. Or, it will also return the g(6)
value if it does not pass the safety test. Use the safetyTest () method to get a boolean value.

data ()
Access the training data used by the model.

Returns Tuple (Training data, labels)

£it (method="Powell’)
Abstract method that is used to train the model. Also, this is the candidate selection part of the Seldonian
Algorithm.

Parameters kwargs — key value arguments sent to the fit function
Returns

predict (X)
Predict the output of the model on the the input X.

Parameters X — input data to be predicted by the model.
Returns output predictions for each sample in the input X

class seldonian.seldonian.VanillaNN (X, y, test_size=0.4, g_hats=[], verbose=False, strat-

ify=False, epochs=10, model=None, random_seed=0)
Bases: seldonian.algorithm.SeldonianAlgorithm

Implement a Seldonian Algorithm on a Neural network.

__init_ (X, y, test_size=0.4, g_hats=[], verbose=False, stratify=False, epochs=10, model=None,

. random_seed=0)
Initialize a model with g_hats constraints. This class is an example of training a non-linear model like a

neural network based on the Seldonian Approach.
Parameters
* X — Input data, this also includes the safety set.

» y —targets for the data X

10 Chapter 3. Reference

Seldonian FairML

* test_size — the fraction of X to be used for the safety test

* g_hats —alist of function callables that correspond to a constriant

* verbose — Set this to True to get some debug messages.

* stratify — set this to true if you want to do stratified sampling of safety set.
* epochs — number of epochs to run teh training of the model. Default: 10

* model — PyTorch model to use. Should be an instance of nn.Module. Defaults to a 2
layer model with a binary output.

_safetyTest (predict=False, ub=True)
Run the safety test on the trained model from the candidate selection part i.e. the £it () function. It is
also used to predict the g(#) value used in candidate selection.

:param kwargs Key value arguments sent to the subclass implementation of safety test. :return Depending
on the implementation, it will either return O if it passes or I if it doesn’t. Or, it will also return the g(6)
value if it does not pass the safety test. Use the safetyTest () method to get a boolean value.

data ()
Access the training data used by the model.

Returns Tuple (Training data, labels)

fit (**kwargs)
Abstract method that is used to train the model. Also, this is the candidate selection part of the Seldonian
Algorithm.

Parameters kwargs — key value arguments sent to the fit function
Returns

predict (X, pmf=False)
Predict the output of the model on the the input X.

Parameters X — input data to be predicted by the model.

Returns output predictions for each sample in the input X

3.3 Sample constraint functions

class seldonian.objectives.Constraint
Bases: abc.ABC

seldonian.objectives.ghat_recall_rate (A_idx, method="ttest', threshold=0.2)
Create a g_hat for the recall rate difference between :param A_idx subset versus the entire data.

Parameters
* A idx-
* method —
* threshold — Recall rate should not be greater than this value.
Returns method that is to be sent to the Seldonian Algorithm and is used for calculating teh g_hat

seldonian.objectives.ghat_tpr diff (A_idx, method="ttest', threshold=0.2)
Create a g(6) for the true positive rate difference between A_idx subset versus the entire data.

Parameters

3.3. Sample constraint functions 11

Seldonian FairML

* A_idx - index of the sensitive attribute in the X passed to the method returned by this
function.

* method — The method used to calculate the upper bound. Currently supported values are:
— ttest - Use student Student’s t-distribution to calculate the confidence interval.
— hoeffdings - Use the Hoeffdings inequality to caluclate the 95% confidence interval.
* threshold — TPR rate should not be greater than this value.
Returns method that is to be sent to the Seldonian Algorithm and is used for calculating the g(6)

seldonian.objectives.ghat_tpr diff t (A_idx, method="ttest', threshold=0.2)
Pytorch version of the true positive rate difference version of ghat_tpr_ diff ().

Create a g(6) for the true positive rate difference between A__idx subset versus the entire data.
Parameters

* A_idx - index of the sensitive attribute in the X passed to the method returned by this
function.

* method — The method used to calculate the upper bound. Currently supported values are:
— ttest - Use student Student’s t-distribution to calculate the confidence interval.
— hoeffdings - Use the Hoeffdings inequality to caluclate the 95% confidence interval.

* threshold — TPR rate should not be greater than this value.

Returns method that is to be sent to the Seldonian Algorithm and is used for calculating the g(6)

3.4 CMA-ES optimizer implementation

class seldonian.cmaes.CMAESModel (X, y, verbose=False, random_seed=0, theta=None, max-

iter=None)
Bases: abc.ABC

This library is an implementation of the paper Preventing undesirable behavior of intelligent machines.

12 Chapter 3. Reference

https://en.wikipedia.org/wiki/Student%27s_t-distribution
https://en.wikipedia.org/wiki/Hoeffding%27s_inequality
https://en.wikipedia.org/wiki/Student%27s_t-distribution
https://en.wikipedia.org/wiki/Hoeffding%27s_inequality
https://doi.org/10.1126/science.aag3311

CHAPTER
FOUR

INDICES AND TABLES

* genindex
¢ modindex

¢ search

13

Seldonian FairML

14 Chapter 4. Indices and tables

PYTHON MODULE INDEX

S

seldonian.algorithm, 7
seldonian.cmaes, 12
seldonian.objectives, 11
seldonian.seldonian, 8

15

Seldonian FairML

16 Python Module Index

INDEX

Sym bols data () (seldonian.seldonian.VanillaNN method), 11
__init__ () (seldonian.seldonian.LogisticRegressionS eld?u'anM odel
method), 8
__init__ () (seldonian.seldonian.PDISSeldonianPolicy CMABS (seldonian.algorithm.SeldonianAlgorithm
method), 9 method), 1
__init__ () (seldonian.seldonian. SeldonianAlgoritthoQié}gCMA@dOnianS eldonian.LogisticRegressionSeldonianModel
method), 9 method), 8
__init__ () (seldonian.seldonian.SeldonianCEMPDISPofitt: () (seldonian.seldonian.SeldonianCEMPDISPolicy
method), 10 method), 10
__init_ () (seldonian.seldonian.VanillaNN method), fit () (seldonian.seldonian.VanillaNN method), 11
10
_safetyTest () (seldo- G
nian.algorithm.SeldonianAlgorithm method), ghat_recall_rate () (in module seldo-
7 nian.objectives), 11
_safetyTest () (seldo- ghat_tpr_diff () (in module seldonian.objectives),
nian.seldonian.LogisticRegressionSeldonianModel 11
method), 8 ghat_tpr_diff_t () (in module seldo-
_safetyTest () (seldo- nian.objectives), 12
nian.seldonian.PDISSeldonianPolicyCMAES
method), 9
_safetyTest () (seldo- LogisticRegressionSeldonianModel (class in
nian.seldonian.SeldonianAlgorithmLogRegCMAES seldonian.seldonian), 8
method), 9
_safetyTest () (seldo- M
nian.seldonian.SeldonianCEMPDISPolicy
module
method), 10 . .) seldonian.algorithm, 7
_safetyTest () (seldonian.seldonian. VanillaNN seldonian.cmaes, 12
method), 11 seldonian.objectives, 11
C seldonian.seldonian, 8
CMAESModel (class in seldonian.cmaes), 12 P
Constraint (class in seldonian.objectives), 11 PDISSeldonianPolicyCMAES (class in seldo-
D nian.seldonian), 8
predict () (seldonian.algorithm.SeldonianAlgorithm
data () (seldonian.algorithm.SeldonianAlgorithm method), 7
method), 7 predict () (seldonian.seldonian.LogisticRegressionSeldonianModel
data () (seldonian.seldonian.LogisticRegressionSeldonianModel method), 8
method), 8 predict () (seldonian.seldonian.PDISSeldonianPolicyCMAES
data () (seldonian.seldonian.SeldonianAlgorithmLogRegCMAES method), 9
method), 9 predict () (seldonian.seldonian.SeldonianAlgorithmLogRegCMAES
data () (seldonian.seldonian.SeldonianCEMPDISPolicy method), 10

method), 10

17

Seldonian FairML

predict () (seldonian.seldonian.SeldonianCEMPDISPolicy

method), 10
predict () (seldonian.seldonian.VanillaNN method),
11

S

safetyTest () (seldo-
nian.algorithm.SeldonianAlgorithm method),
7
seldonian.algorithm
module, 7
seldonian.cmaes
module, 12
seldonian.objectives
module, 11
seldonian.seldonian
module, 8
SeldonianAlgorithm (class in seldo-
nian.algorithm), 7
SeldonianAlgorithmLogRegCMAES (class in sel-
donian.seldonian), 9
SeldonianCEMPDISPolicy (class in seldo-
nian.seldonian), 10

V

VanillaNN (class in seldonian.seldonian), 10

18

Index

	Introduction
	Quickstart
	Model class creation
	Training

	Reference
	Seldonian Algorithm
	Seldonian Abstract classes
	Sample constraint functions
	CMA-ES optimizer implementation

	Indices and tables
	Python Module Index
	Index

