

Welcome to Seldonian FairML’s documentation!

Table of Contents

	Introduction

	Quickstart
	Model class creation

	Training

	Reference
	Seldonian Algorithm

	Seldonian Abstract classes

	Sample constraint functions

	CMA-ES optimizer implementation

This library is an implementation of the paper Preventing undesirable behavior of intelligent machines [https://doi.org/10.1126/science.aag3311].

Indices and tables

	Index

	Module Index

	Search Page

Introduction

Welcome to the documentation of FairML, a tool to build Machine Learning models and RL agents with certain desirable behavior.
You can read more about this approach here [https://aisafety.cs.umass.edu/paper.html].

Also, read more about a comprehensive quickstart guide at https://aisafety.cs.umass.edu.

Quickstart

The best way is get started is to quickly jump into an example: Here [https://colab.research.google.com/github/hannanabdul55/seldonian-fairness/blob/master/logistic_regression_seldonian.ipynb] is a Google Colab notebook to train a simple Logistic Regression model on the UCI Adult dataset.
And here is a step-by-step tutorial.

Model class creation

Create a subclass of seldonian.algorithm.SeldonianAlgorithm class.

from seldonian.algorithm import *
class ExampleSeldonianModel(SeldonianAlgorithm):
 def __init__(self, *params, **kwargs):
 example_model = Model()
 #initialize all the model parameters
 pass

Now that we have a basic model setup, we need to implement the abstract method of SeldonianAlgorithm class.

	predict - This is a basic prediction method that uses the current model parameters to predict the output targets.

from seldonian.algorithm import *
class ExampleSeldonianModel(SeldonianAlgorithm):
 def __init__(self, *params, **kwargs):
 self.example_model = Model()
 #initialize all the model parameters
 pass
 def predict(self, X, **kwargs):
 # prediction based on teh model
 return self.example_model.predict(X)

	data returns the complete data and targets as a tuple back. This includes the safety as well as the candidate data.

from seldonian.algorithm import *
class ExampleSeldonianModel(SeldonianAlgorithm):
 def __init__(self, *params, **kwargs):
 self.example_model = Model()
 #initialize all the model parameters
 pass
 def predict(self, X, **kwargs):
 # prediction based on teh model
 return self.example_model.predict(X)
 def data(self):
 return X, y

	fit trains the model with the constraints.

from seldonian.algorithm import *
class ExampleSeldonianModel(SeldonianAlgorithm):
 def __init__(self, *params, **kwargs):
 self.example_model = Model()
 #initialize all the model parameters
 pass
 def predict(self, X, **kwargs):
 # prediction based on teh model
 return self.example_model.predict(X)
 def data(self):
 return self.X, self.y
 def fit(self, *args, **kwargs):
 # fit model based under the constraint that g >0.
 pass

There are various examples of such constraint optimization problems implemented like the Lagrangian 2 player game as implemented in the VanillaNN class.

Or using a barrier when optimizing using a Black box optimization technique like CMA-ES or scipy.optimize.minimize class. You can find them under the seldonian.seldonian package.

	_safetyTest performs a the safety test using the safety set, or predicts the upper bound of the constraint g(\theta) during candidate selection (or in this case, fit).

from seldonian.algorithm import *
class ExampleSeldonianModel(SeldonianAlgorithm):
 def __init__(self, *params, **kwargs):
 self.example_model = Model()
 #initialize all the model parameters
 pass
 def predict(self, X, **kwargs):
 # prediction based on teh model
 return self.example_model.predict(X)
 def data(self):
 return self.X, self.y
 def fit(self, *args, **kwargs):
 # fit model based under the constraint that g >0.
 pass
 def _safetyTest(self, predict, **kwargs):
 if predict:
 # predict the upper bound during candidate selection
 return 1 if passed_is_predicted else 0
 pass
 else:
 # run the actual safety test
 return 1 if passed else 0
 pass
 pass

Training

This is all you need to implement a Seldonian model. You also need some constraints that are basically function callables. Some examples of such constraints is present in the seldonian.objectives package. A sample run would look something like this -

constraints = [constraint1, constraint2,...] #list of function callables
seldonian_model = ExampleSeldonianModel(constriants, data, other_args)
X, y = data
seldonian_model.fit(X, y)
return seldonian_model if seldonian_model._safetyTest() else NSF # No solution found
we now have a trained model you can now do your predictions on this model

Reference

Seldonian Algorithm

	
class seldonian.algorithm.SeldonianAlgorithm

	Bases: abc.ABC

Abstract class which represents the basic functions of a Seldonian Algorithm.
This class can be considered as a starting point for implementing your own Seldonian algorithm.

Read more about the Seldonian Approach in
Preventing undesirable behavior of intelligent machines [https://doi.org/10.1126/science.aag3311]

	
abstract _safetyTest(**kwargs)

	Run the safety test on the trained model from the candidate selection part i.e. the fit() function. It is also used to predict the \(g(\theta)\) value used in candidate selection.

:param kwargs Key value arguments sent to the subclass implementation of safety test.
:return Depending on the implementation, it will either return 0 if it passes or
1 if it doesn’t. Or, it will also return the \(g(\theta)\) value
if it does not pass the safety test. Use the safetyTest() method to get a boolean value.

	
abstract data()

	Access the training data used by the model.

	Returns

	Tuple (Training data, labels)

	
abstract fit(**kwargs)

	Abstract method that is used to train the model. Also, this is the candidate selection
part of the Seldonian Algorithm.

	Parameters

	kwargs – key value arguments sent to the fit function

	Returns

	

	
abstract predict(X)

	Predict the output of the model on the the input X.

	Parameters

	X – input data to be predicted by the model.

	Returns

	output predictions for each sample in the input X

	
safetyTest(**kwargs)

	A wrapper for the _safetyTest method that return a Boolean indicating whether the
model passed the safety test.

	Parameters

	kwargs – Key-value arguments that is passed directly to _safetyTest.

	Returns

	

	True if model passed the safety test.

	False if the model fails the safety test.

Seldonian Abstract classes

Use this as a base class to implement your own fair model using the Seldonian approach.

	
class seldonian.seldonian.LogisticRegressionSeldonianModel(X, y, g_hats=[], safety_data=None, test_size=0.5, verbose=True, hard_barrier=False, stratify=False, random_seed=0)

	Bases: seldonian.algorithm.SeldonianAlgorithm

Implements a Logistic Regression classifier using scipy.optimize package as the optimizer
using the Seldonian Approach for training the model.
Have a look at the scipy.optimize.minimize reference [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html]
for more information. You can use any of the methods listen in the method input of this SciPy
function as a parameter to the fit() method call.

	
__init__(X, y, g_hats=[], safety_data=None, test_size=0.5, verbose=True, hard_barrier=False, stratify=False, random_seed=0)

	Initialize self. See help(type(self)) for accurate signature.

	
_safetyTest(theta=None, predict=False, ub=True)

	This is the mehtod that implements the safety test. for this model.

	Parameters

	
	theta – Model parameters to be used to run the safety test. Default - None. If None, the current model parameters used.

	predict – Default - False. Indicate whether you want to predict the upper bound of \(g(\theta)\) using the candidate set (this is used when running candidate selection).

	ub – returns the upper bound if True. Else, it returns the calculated value. Default- True.

	Returns

	Returns the value \(max\{0, g(\theta) | X\}\) if predict = False , else \(max\{0, \hat{g}(\theta) | X\}\).

	
data()

	Access the training data used by the model.

	Returns

	Tuple (Training data, labels)

	
fit(opt='Powell')

	Abstract method that is used to train the model. Also, this is the candidate selection
part of the Seldonian Algorithm.

	Parameters

	kwargs – key value arguments sent to the fit function

	Returns

	

	
predict(X)

	Predict the output of the model on the the input X.

	Parameters

	X – input data to be predicted by the model.

	Returns

	output predictions for each sample in the input X

	
class seldonian.seldonian.PDISSeldonianPolicyCMAES(data, states, actions, gamma, threshold=2, test_size=0.4, multiprocessing=True)

	Bases: seldonian.cmaes.CMAESModel, seldonian.algorithm.SeldonianAlgorithm

	
__init__(data, states, actions, gamma, threshold=2, test_size=0.4, multiprocessing=True)

	Initialize self. See help(type(self)) for accurate signature.

	
_safetyTest(theta, predict=False, ub=False, est=None)

	Run the safety test on the trained model from the candidate selection part i.e. the fit() function. It is also used to predict the \(g(\theta)\) value used in candidate selection.

:param kwargs Key value arguments sent to the subclass implementation of safety test.
:return Depending on the implementation, it will either return 0 if it passes or
1 if it doesn’t. Or, it will also return the \(g(\theta)\) value
if it does not pass the safety test. Use the safetyTest() method to get a boolean value.

	
predict(X)

	Predict the output of the model on the the input X.

	Parameters

	X – input data to be predicted by the model.

	Returns

	output predictions for each sample in the input X

	
class seldonian.seldonian.SeldonianAlgorithmLogRegCMAES(X, y, g_hats=[], safety_data=None, verbose=False, test_size=0.35, stratify=False, hard_barrier=False, random_seed=0)

	Bases: seldonian.cmaes.CMAESModel, seldonian.algorithm.SeldonianAlgorithm

Implements a Logistic Regression classifier with CMA-ES [https://en.wikipedia.org/wiki/CMA-ES] as the optimizer using the Seldonian Approach.

	
__init__(X, y, g_hats=[], safety_data=None, verbose=False, test_size=0.35, stratify=False, hard_barrier=False, random_seed=0)

	Initialize the model.

	Parameters

	
	X – Training data to be used by the model.

	y – Training labels for the X

	g_hats – A list of all constraint on the model.

	safety_data – If you have a separate held out data to be used for the safety set, it should be specified here, otherwise, the data X is split according to test_size for this.

	verbose – Print out extra log statements

	test_size – ratio of the data X to e used for the safety set.

	stratify – Stratify the training data when splitting to train/safety sets.

	hard_barrier – Use a hard barrier while training the data using the BBO optimizer.

	
_safetyTest(theta=None, predict=False, ub=True)

	Run the safety test on the trained model from the candidate selection part i.e. the fit() function. It is also used to predict the \(g(\theta)\) value used in candidate selection.

:param kwargs Key value arguments sent to the subclass implementation of safety test.
:return Depending on the implementation, it will either return 0 if it passes or
1 if it doesn’t. Or, it will also return the \(g(\theta)\) value
if it does not pass the safety test. Use the safetyTest() method to get a boolean value.

	
data()

	Access the training data used by the model.

	Returns

	Tuple (Training data, labels)

	
predict(X)

	Predict the output of the model on the the input X.

	Parameters

	X – input data to be predicted by the model.

	Returns

	output predictions for each sample in the input X

	
class seldonian.seldonian.SeldonianCEMPDISPolicy(data, states, actions, gamma, threshold=1.41537, test_size=0.4, verbose=False, use_ray=False)

	Bases: seldonian.algorithm.SeldonianAlgorithm

	
__init__(data, states, actions, gamma, threshold=1.41537, test_size=0.4, verbose=False, use_ray=False)

	Initialize self. See help(type(self)) for accurate signature.

	
_safetyTest(theta, predict=False, ub=False)

	Run the safety test on the trained model from the candidate selection part i.e. the fit() function. It is also used to predict the \(g(\theta)\) value used in candidate selection.

:param kwargs Key value arguments sent to the subclass implementation of safety test.
:return Depending on the implementation, it will either return 0 if it passes or
1 if it doesn’t. Or, it will also return the \(g(\theta)\) value
if it does not pass the safety test. Use the safetyTest() method to get a boolean value.

	
data()

	Access the training data used by the model.

	Returns

	Tuple (Training data, labels)

	
fit(method='Powell')

	Abstract method that is used to train the model. Also, this is the candidate selection
part of the Seldonian Algorithm.

	Parameters

	kwargs – key value arguments sent to the fit function

	Returns

	

	
predict(X)

	Predict the output of the model on the the input X.

	Parameters

	X – input data to be predicted by the model.

	Returns

	output predictions for each sample in the input X

	
class seldonian.seldonian.VanillaNN(X, y, test_size=0.4, g_hats=[], verbose=False, stratify=False, epochs=10, model=None, random_seed=0)

	Bases: seldonian.algorithm.SeldonianAlgorithm

Implement a Seldonian Algorithm on a Neural network.

	
__init__(X, y, test_size=0.4, g_hats=[], verbose=False, stratify=False, epochs=10, model=None, random_seed=0)

	Initialize a model with g_hats constraints. This class is an example of training a
non-linear model like a neural network based on the Seldonian Approach.

	Parameters

	
	X – Input data, this also includes the safety set.

	y – targets for the data X

	test_size – the fraction of X to be used for the safety test

	g_hats – a list of function callables that correspond to a constriant

	verbose – Set this to True to get some debug messages.

	stratify – set this to true if you want to do stratified sampling of safety set.

	epochs – number of epochs to run teh training of the model. Default: 10

	model – PyTorch model to use. Should be an instance of nn.Module. Defaults to a 2 layer model with a binary output.

	
_safetyTest(predict=False, ub=True)

	Run the safety test on the trained model from the candidate selection part i.e. the fit() function. It is also used to predict the \(g(\theta)\) value used in candidate selection.

:param kwargs Key value arguments sent to the subclass implementation of safety test.
:return Depending on the implementation, it will either return 0 if it passes or
1 if it doesn’t. Or, it will also return the \(g(\theta)\) value
if it does not pass the safety test. Use the safetyTest() method to get a boolean value.

	
data()

	Access the training data used by the model.

	Returns

	Tuple (Training data, labels)

	
fit(**kwargs)

	Abstract method that is used to train the model. Also, this is the candidate selection
part of the Seldonian Algorithm.

	Parameters

	kwargs – key value arguments sent to the fit function

	Returns

	

	
predict(X, pmf=False)

	Predict the output of the model on the the input X.

	Parameters

	X – input data to be predicted by the model.

	Returns

	output predictions for each sample in the input X

Sample constraint functions

	
class seldonian.objectives.Constraint

	Bases: abc.ABC

	
seldonian.objectives.ghat_recall_rate(A_idx, method='ttest', threshold=0.2)

	Create a g_hat for the recall rate difference between :param A_idx subset versus
the entire data.

	Parameters

	
	A_idx –

	method –

	threshold – Recall rate should not be greater than this value.

	Returns

	method that is to be sent to the Seldonian Algorithm and is used for calculating teh g_hat

	
seldonian.objectives.ghat_tpr_diff(A_idx, method='ttest', threshold=0.2)

	Create a \(g(\theta)\) for the true positive rate difference between A_idx subset versus
the entire data.

	Parameters

	
	A_idx – index of the sensitive attribute in the X passed to the method returned by this function.

	method – The method used to calculate the upper bound. Currently supported values are:

	ttest - Use student Student’s t-distribution [https://en.wikipedia.org/wiki/Student%27s_t-distribution] to calculate the confidence interval.

	hoeffdings - Use the Hoeffdings inequality [https://en.wikipedia.org/wiki/Hoeffding%27s_inequality] to caluclate the 95% confidence interval.

	threshold – TPR rate should not be greater than this value.

	Returns

	method that is to be sent to the Seldonian Algorithm and is used for calculating the \(g(\theta)\)

	
seldonian.objectives.ghat_tpr_diff_t(A_idx, method='ttest', threshold=0.2)

	Pytorch version of the true positive rate difference version of ghat_tpr_diff().

Create a \(g(\theta)\) for the true positive rate difference between A_idx subset versus
the entire data.

	Parameters

	
	A_idx – index of the sensitive attribute in the X passed to the method returned by this function.

	method – The method used to calculate the upper bound. Currently supported values are:

	ttest - Use student Student’s t-distribution [https://en.wikipedia.org/wiki/Student%27s_t-distribution] to calculate the confidence interval.

	hoeffdings - Use the Hoeffdings inequality [https://en.wikipedia.org/wiki/Hoeffding%27s_inequality] to caluclate the 95% confidence interval.

	threshold – TPR rate should not be greater than this value.

	Returns

	method that is to be sent to the Seldonian Algorithm and is used for calculating the \(g(\theta)\)

CMA-ES optimizer implementation

	
class seldonian.cmaes.CMAESModel(X, y, verbose=False, random_seed=0, theta=None, maxiter=None)

	Bases: abc.ABC

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 seldonian	

 	
 	
 seldonian.algorithm	

 	
 	
 seldonian.cmaes	

 	
 	
 seldonian.objectives	

 	
 	
 seldonian.seldonian	

Index

 _
 | C
 | D
 | F
 | G
 | L
 | M
 | P
 | S
 | V

_

 	
 	__init__() (seldonian.seldonian.LogisticRegressionSeldonianModel method)

 	(seldonian.seldonian.PDISSeldonianPolicyCMAES method)

 	(seldonian.seldonian.SeldonianAlgorithmLogRegCMAES method)

 	(seldonian.seldonian.SeldonianCEMPDISPolicy method)

 	(seldonian.seldonian.VanillaNN method)

 	
 	_safetyTest() (seldonian.algorithm.SeldonianAlgorithm method)

 	(seldonian.seldonian.LogisticRegressionSeldonianModel method)

 	(seldonian.seldonian.PDISSeldonianPolicyCMAES method)

 	(seldonian.seldonian.SeldonianAlgorithmLogRegCMAES method)

 	(seldonian.seldonian.SeldonianCEMPDISPolicy method)

 	(seldonian.seldonian.VanillaNN method)

C

 	
 	CMAESModel (class in seldonian.cmaes)

 	
 	Constraint (class in seldonian.objectives)

D

 	
 	data() (seldonian.algorithm.SeldonianAlgorithm method)

 	(seldonian.seldonian.LogisticRegressionSeldonianModel method)

 	(seldonian.seldonian.SeldonianAlgorithmLogRegCMAES method)

 	(seldonian.seldonian.SeldonianCEMPDISPolicy method)

 	(seldonian.seldonian.VanillaNN method)

F

 	
 	fit() (seldonian.algorithm.SeldonianAlgorithm method)

 	(seldonian.seldonian.LogisticRegressionSeldonianModel method)

 	(seldonian.seldonian.SeldonianCEMPDISPolicy method)

 	(seldonian.seldonian.VanillaNN method)

G

 	
 	ghat_recall_rate() (in module seldonian.objectives)

 	
 	ghat_tpr_diff() (in module seldonian.objectives)

 	ghat_tpr_diff_t() (in module seldonian.objectives)

L

 	
 	LogisticRegressionSeldonianModel (class in seldonian.seldonian)

M

 	
 	
 module

 	seldonian.algorithm

 	seldonian.cmaes

 	seldonian.objectives

 	seldonian.seldonian

P

 	
 	PDISSeldonianPolicyCMAES (class in seldonian.seldonian)

 	predict() (seldonian.algorithm.SeldonianAlgorithm method)

 	(seldonian.seldonian.LogisticRegressionSeldonianModel method)

 	(seldonian.seldonian.PDISSeldonianPolicyCMAES method)

 	(seldonian.seldonian.SeldonianAlgorithmLogRegCMAES method)

 	(seldonian.seldonian.SeldonianCEMPDISPolicy method)

 	(seldonian.seldonian.VanillaNN method)

S

 	
 	safetyTest() (seldonian.algorithm.SeldonianAlgorithm method)

 	
 seldonian.algorithm

 	module

 	
 seldonian.cmaes

 	module

 	
 seldonian.objectives

 	module

 	
 	
 seldonian.seldonian

 	module

 	SeldonianAlgorithm (class in seldonian.algorithm)

 	SeldonianAlgorithmLogRegCMAES (class in seldonian.seldonian)

 	SeldonianCEMPDISPolicy (class in seldonian.seldonian)

V

 	
 	VanillaNN (class in seldonian.seldonian)

 nav.xhtml

 Table of Contents

 		
 Welcome to Seldonian FairML’s documentation!

 		
 Introduction

 		
 Quickstart

 		
 Model class creation

 		
 Training

 		
 Reference

 		
 Seldonian Algorithm

 		
 Seldonian Abstract classes

 		
 Sample constraint functions

 		
 CMA-ES optimizer implementation

_static/plus.png

_static/file.png

_static/minus.png

